National Journal of Physiology, Pharmacy and Pharmacology

RESEARCH ARTICLE

Impact of blood pressure and serum electrolytes level on ejection fraction in acute myocardial infarction patients

Samir Kumar Singh¹, Manish Bajpai², Sunita Tiwari², Rishi Sethi³, Dileep Kumar Verma², Gaurav Chaudhary³, Tej Bali Singh⁴

¹Department of Physiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India, ²Department of Physiology, King George's Medical University, Lucknow, Uttar Pradesh, India, ³Department of Cardiology, King George's Medical University, Lucknow, Uttar Pradesh, India, ⁴Department of Community Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India

Correspondence to: Samir Kumar Singh, E-mail: drskss01@gmail.com

Received: December 17, 2019; Accepted: July 08, 2020

ABSTRACT

Background: Various factors such as age, body mass index (BMI), blood pressure (BP), and serum electrolytes affect ejection fraction (EF) improvement in acute myocardial infarction (AMI) patients after percutaneous coronary intervention (PCI). Many studies have been done to assess effect of these factors on long-term basis, but none of the studies showed effect of these factors on efficacy of PCI. **Aims and Objectives:** This study aims to find out the role of BP and serum electrolytes in patients of AMI and to assess the efficacy of PCI as well as to predict the prognosis in AMI patients. **Materials and Methods:** It is a longitudinal, interventional study. EF of 52 patients of AMI was measured by echocardiography before and after angioplasty who had been admitted in cardiology emergency. Statistical software IBM Statistical Package for the Social Sciences trial version 16 was used for analysis of data. **Results:** We found that as the age advances, there is less improvement in EF (P = 0.38) also as the BMI increases, improvement in EF decreases (P = 0.53). Tachycardia leads to improvement in EF (P = 0.13), while those patients who had initial abnormal BP showed less improvement in EF (P = 0.93). Serum electrolytes analysis showed that as serum sodium and potassium level increase, improvement decrease (P = 0.06), while those patients who had normal serum calcium level showed less improvement in EF (P = 0.76). Only serum sodium and serum potassium showed some significance statistically (P = 0.06). **Conclusion:** Increased serum sodium and potassium level are associated with poor prognosis, while lesser age and normal BMI are associated with improved prognosis in AMI patients after PCI.

KEY WORDS: Acute Myocardial Infarction; Percutaneous Intervention; Ejection Fraction; Serum Electrolytes

INTRODUCTION

Efficient heart pumping is necessary to meet the body demand. For instance, in physical exercise, body needs increased level of oxygen in comparison to resting state

Access this article online

Website: www.njppp.com

Quick Response code

DOI: 10.5455/njppp.2020.10.12388201908072020

for increased muscular activity. Ejection fraction (EF) is an important parameter to measure efficiency of heart.

When blood flow decreases to a part of the heart, it causes damage to the heart muscle and leads to acute myocardial infarction (AMI).^[1] High blood pressure (BP), paucity of exercise, obesity, smoking, and diabetes Mellitus are various risk factors for AMI.^[2,3] Percutaneous coronary intervention (PCI) is used to treat narrowing of coronary arteries of the heart in AMI patients. PCI is an alternative to coronary artery bypass grafting. The blood flow in the coronary artery improves after angioplasty. Many patients

National Journal of Physiology, Pharmacy and Pharmacology Online 2020. © 2020 Samir Kumar Singh, et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creative commons.org/licenses/by/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix, transform, and build upon the material for any purpose, even commercially, provided the original work is properly cited and states its license.

get relieved of their symptoms and their work efficiency gets increased.

The cardiac contractility depends on various factors. Serum calcium level is one of the important factors which can alter myocardial contractility. The force of contraction of cardiac muscle depends on binding of myosin with actin. The degree of binding depends on calcium ion concentration in the cardiac myocytes. Furthermore, the sympathetic nervous system stimulation indirectly increases calcium ion concentration by releasing catecholamine. The myocardial contractility can also be altered by altering preload, afterload, and heart rate. [4]

Systemic hypotension occurs very commonly in patients of AMI. Some studies found that mortality in AMI patients can be predicted on the basis of hypotension at the time of admission in the hospital.^[5] In such patients, mortality rate is high despite thrombolytic therapy. Some studies postulated that success of thrombolytic therapy depends on systemic BP.^[6] Some studies suggest that pulse pressure can also affect the mortality in patients of AMI.^[7,8] A recent study showed that higher systolic, diastolic, and pulse pressure were associated with an increased rate of adverse events in AMI patients. Hence, BP control is very important in such population.^[9]

The aim of this study was to examine the role of BP and serum electrolytes in patients with acute MI and to assess the efficacy of PCI as well as to predict the prognosis because the role of BP and serum electrolytes is uncertain, especially on outcome of PCI.

MATERIALS AND METHODS

A total of 52 patients of AMI were included in this study. We included those patients who visited to cardiology department of King George's Medical University (KGMU), Lucknow, for treatment. All patients were male. This study was a longitudinal, interventional study. Patients with any of the conditions such as anemia, valvular heart disease, myocarditis, and cardiac tamponade, endocrinal disorders such as thyroid dysfunction, vitamin deficiency such as Vitamin B₁ deficiency, pericardial effusion, and atrial fibrillation were excluded to minimize the possibility that these conditions may influence the outcome of study. This study was done after obtaining ethical clearance from the Institutional Ethical Committee and Review Board of KGMU and written, informed consent from the patients.

Serum calcium, sodium, and potassium level were measured after admission in the cardiology emergency. In general examination, pulse rate and BP (sphygmomanometer) were measured. Echocardiography (ECHO) method was used to measure EF within 6–8 h of diagnosis of AMI. Coronary angiography was done and then patients underwent coronary

angioplasty (PCI). After angioplasty, EF was measured with the help of ECHO. The EF obtained before and after PCI was analyzed.

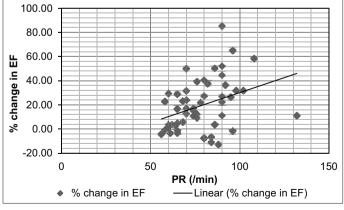
Improvement in these patients is defined by two criteria – (1) relieved chest pain and discomfort and (2) improvement in EF from the baseline value. Statistical software Statistical Package for the Social Sciences trial version 16 was used for analysis of data. "P < 0.05" was considered to be statistically significant at two-tailed test.

RESULTS

In this study, 52 male patients with AMI were enrolled. The mean age is 57.92 years with standard deviation of 10.68 years. Data from all the patients were collected and analyzed.

Table 1 shows that 71.2% of cases were above 50 years and as the age advances, there is less chance of improvement in EF (P = 0.38). The patients having age >50 years, only 75.7% showed improvement after PCI while 86.7% of patients with age up to 50 years showed improvement in EF. It is also evident that 63.5% of the admitted patients were overweight and obese while 28.8% have normal body mass index (BMI) and few patients are underweight too (7.7%). It is found that as the BMI increases, improvement in EF decreases (P = 0.53). Patients who have BMI \geq 23 kg/m² showed less improvement in comparison to those patients who have normal BMI and BMI <18.5 kg/m². All the four underweight patients showed improvement in EF.

It has been noticed [Table 1] that 50% of patients have normal systolic BP while 40.4% have high SBP and few (9.6%) have low SBP. All patients have normal diastolic BP. About 80.8% of patients with normal SBP showed improved EF after PCI while 80% of patients with low SBP and 76.2% of patients with high SBP showed improvement in EF. Hence, it is found that those patients who had abnormal SBP showed less improvement in EF (P = 0.93). Pulse rate of 78.8% of patients was in normal range while some of them have tachycardia (15.4%) and some have bradycardia (5.8%). About 80.5% of patients who have normal pulse rate showed improvement while 33.3% of patients having bradycardia and 87.5% of patients having tachycardia showed improvement. Hence, it can be said that as the pulse rate (PR) increases, improvement in EF increases (P = 0.13) [Figure 1].


Table 2 shows that 55.8% of cases have normal serum calcium level, while 42.3% of cases showed hypocalcemia and only 1 case (1.9%) had hypercalcemia. We found that 75.9% of patients who have normal serum calcium level showed improvement in EF and 81.8% of hypocalcemia patients showed improved EF after PCI. There was only one patient with hypercalcemia and he showed improvement in EF. Hence, it is found that those patients who had normal serum calcium level showed less improvement in EF (P = 0.76).

Baseline characteristics	Improved status		Total no. of cases	χ^2	<i>P</i> -value
	Yes	No			
BMI* (kg/m²)					
<18.5 (underweight)	4 (100)	0 (0)	4 (7.7)	1.27	0.53
18.5-22.9 (normal weight)	12 (80)	3 (20)	15 (28.8)		
≥23 (overweight and obese)	25 (75.76)	8 (24.24)	33 (63.5)		
Age group (years)					
21–50	13 (86.7)	2 (13.3)	15 (28.8)	0.77	0.38
51-80	28 (75.7)	9 (24.3)	37 (71.2)		
SBP (mmHg)					
≤108 (low SBP)	4 (80)	1 (20)	5 (9.6)	0.15	0.93
110–130 (normal range)	21 (80.8)	5 (19.2)	26 (50)		
132-160 (high SBP)	16 (76.2)	5 (23.8)	21 (40.4)		
PR (/min)					
<60 (bradycardia)	1 (33.3)	2 (66.7)	3 (5.8)	4.15	0.13
60–90 (normal range)	33 (80.5)	8 (19.5)	41 (78.8)		
>90 (tachycardia)	7 (87.5)	1 (12.5)	8 (15.4)		

^{*}WHO criteria of BMI for Indian population have been used. BMI: Body mass index

Blood parameters	Improved status		Total no. of cases	χ^2	<i>P</i> -value
	Yes	No		^	
S. Na+ (mEq/lt)					
<135 (hyponatremia)	7 (100)	0 (0)	7 (13.5)	5.67	0.06
135–145 (normal range)	34 (77.3)	10 (22.7)	44 (84.6)		
>145 (hypernatremia)	0 (0)	1 (100)	1 (1.9)		
S. K+ (mEq/lt)					
<3.5 (hypokalemia)	5 (100)	0 (0)	5 (9.6)	5.67	0.06
3.5–5 (normal range)	30 (83.3)	6 (16.7)	36 (69.2)		
>5 (hyperkalemia)	6 (54.5)	5 (45.5)	11 (21.2)		
S. Ca++ (mEq/lt)					
<4.3 (hypocalcemia)	18 (81.8)	4 (18.2)	22 (42.3)	0.54	0.76
4.3–5.3 (Normal range)	22 (75.9)	7 (24.1)	29 (55.8)		
>5.3 (hypercalcemia)	1 (100)	0 (0)	1 (1.9)		

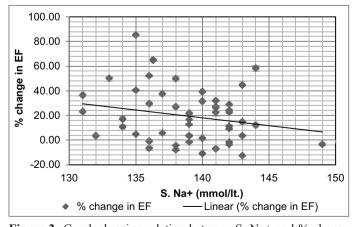
EF: Ejection fraction

Figure 1: Graph showing relation between PR and % change in ejection fraction

It has been noticed [Table 2] that 69.2% of cases have normal serum potassium level, while 21.2% of cases have hyperkalemia and 9.6% of cases have hypokalemia. It has been found that all the five hypokalemia patients showed improvement in EF while 83.3% of the patients having normal serum potassium level showed improvement in EF. Only 54.5% of hyperkalemia patients showed improved EF after PCI. Hence, it can be said that as serum potassium level increases, improvement decreases within the group (P = 0.06).

It is also evident [Table 2] that 84.6% of patients have normal serum sodium level, while few cases (13.5%) have hyponatremia and only 1 case (1.9%) has hypernatremia.

Patients having low and normal serum sodium level showed improvement in EF after PCI. About 100% of patients who have low serum sodium level showed improved EF while 77.3% of patients who have normal serum sodium level showed improvement in EF. Only one patient had hypernatremia and he did not show improvement in EF. Hence, it can be said that as serum sodium level increases, improvement decreases within the group (P = 0.06) [Figure 2].


DISCUSSION

This is an exploratory study and after analyzing the data, we found that EF is affected by the factors under investigation though only serum sodium and serum potassium level showed some significance (P = 0.06).

Lip *et al.* (2007) found in a study that hypertensive patients have poor prognosis. [10] In our study, it is found that hypotensive and hypertensive patients showed slightly less improvement in EF in comparison to those patients who had normal BP (P = 0.93). Hence, we can say that results are equivocal in reference to BP. It is also found that as the PR increases, improvement in EF increases within the group (P = 0.13). Hence, tachycardia has a positive effect on improvement in EF, though it is not statistically significant.

Increased sodium consumption leads to increased BP. This increased BP put extra load on arterial wall and hence affecting blood flow. Hence, we can say that serum sodium level can affect outcome after PCI indirectly by affecting BP. In our study, we found that increasing serum sodium level decreases improvement (P = 0.06). Serum potassium level plays an important role in regulation of BP. When serum potassium level increases, it reduces BP but hyperkalemia can disturb the heart rhythm. It has been found in our study that increasing serum potassium level deteriorates the improvement in EF (P = 0.06).

It is a well-known fact that serum calcium plays an important role in cardiovascular physiology. Normal serum calcium

Figure 2: Graph showing relation between S. Na+ and % change in ejection fraction

level is important for adequate myocardial contractility. Contrary to the previous findings, in this study, we found that the patients with normal serum calcium level showed less improvement in comparison to the patients with abnormal serum calcium level.

It is clear from the findings that age has adverse effect on outcome of coronary angioplasty, especially over 50 years, though it is statistically not significant (P=0.38). Starr *et al.* (1934) found that the average cardiac index slowly declines after 50 years.^[11] Few studies also suggested that elderly population with AMI, who received a conservative treatment, have a higher mortality in comparison to the younger population.^[12-14] In a study, Singh *et al.* (2018) found that AMI patients who had age more than 40 years showed less improvement after PCI.^[15]

It is a well-known fact that overweight and obese patients have poor prognosis after coronary intervention. In this study, we found that as the BMI increases, improvement in EF decreases (P=0.53). Interestingly, all the four underweight patients showed improvement in EF. However, there is a controversial finding termed as "obesity paradox," which tells that obese AMI patients have improved outcomes after PCI, in comparison to normal BMI patients. [16-19]

This study has some limitations. First of all, we did not record serum parathyroid hormone and Vitamin D level to find more accurate correlation between serum calcium level and improvement in EF. Hence, we are not able to exclude confounding factors such as primary and secondary hyperparathyroidism. Second, we have done serum electrolytes level measurement only at the time of admission in emergency. Third, the sample size is small, so to predict the outcome accurately we need a larger sample size. Finally, it is a hospital-based study so it is vulnerable to sample selection bias.

CONCLUSION

Based on the findings of this study, it can be concluded that increased serum sodium and potassium levels are associated with poor prognosis, while lesser age and normal BMI are associated with improved prognosis in AMI patients after PCI.

ACKNOWLEDGMENT

We are thankful to the patients and the technical staff of the Department of Physiology and Department of Cardiology of KGMU for their cooperation and providing full support during this study. We also like to thank Dr. Nilesh Kumar, Associate Professor, Department of General Medicine, Institute of Medical Sciences, BHU, Varanasi, for his kind support and valuable advice.

REFERENCES

- 1. What Are the Signs and Symptoms of Coronary Heart Disease? 2014. Available from: https://www.nhlbi.nih.gov. [Last accessed on 2014 Sep 29].
- 2. Mehta PK, Wei J, Wenger NK. Ischemic heart disease in women: A focus on risk factors. Trends Cardiovasc Med 2015;25:140-51.
- 3. Mendis S, Puska P, Norrving B. Global Atlas on Cardiovascular Disease Prevention and Control. 1st ed. Geneva: World Health Organization in Collaboration with the World Heart Federation and the World Stroke Organization; 2011. p. 3-18.
- Klabunde RE. Cardiac Inotropy (Contractility). Cardiovascular Physiology Concepts; 2011. Available from: https://www. cvphysiology.com/Cardiac%20Function/CF010. [Last accessed on 2011 Jan 27].
- Williams BA, Wright RS, Murphy JG, Brilakis ES, Reeder GS, Jaffe AS. A new simplified immediate prognostic risk score for patients with acute myocardial infarction. Emerg Med J 2006;23:186-92.
- Sabol MB, Luippold RS, Hebert J, Ball SP, Corrao JM, Becker RC. Association between serial measures of systemic blood pressure and early coronary arterial perfusion status following intravenous thrombolytic therapy. J Thromb Thrombolysis 1994;1:79-84.
- Domanski MJ, Mitchell GF, Norman JE, Exner DV, Pitt B, Pfeffer MA. Independent prognostic information provided by sphygmomanometrically determined pulse pressure and mean arterial pressure in patients with left ventricular dysfunction. J Am Coll Cardiol 1998;33:951-8.
- 8. Mitchell GF, Moye L, Braunwald E, Rouleau JL, Bernstein V, Geltman EM, *et al.* Sphygmomanometrically determined pulse pressure is a powerful independent predictor of recurrent events after myocardial infarction in patients with impaired left ventricular function. Circulation 1997;96:4254-60.
- Lip GY, Skjøth F, Overvad K, Rasmussen LH, Larsen TB. Blood pressure and prognosis in patients with incident heart failure: The diet, cancer and health (DCH) cohort study. Clin Res Cardiol 2015;104:1088-96.
- Lip GY, Frison L, Grind M. Effect of hypertension on anticoagulated patients with atrial fibrillation. Eur Heart J 2007;28:752-9.
- 11. Starr I, Donal JS, Margolies A, Shaw R, Collins LH, Gamble CJ. Studies of the heart and circulation in disease; estimations of basal cardiac output, metabolism, heart size and blood pressure in 235 subjects. J Clin Invest 1934;13:561-92.

- 12. Gale CP, Cattle BA, Woolston A, Baxter PD, West TH, Simms AD, *et al.* Resolving inequalities in care? Reduced mortality in the elderly after acute coronary syndromes. The myocardial ischaemia national audit project 2003-2010. Eur Heart J 2012;33:630-9.
- 13. Halon DA, Salim A, Dobrecky-Mery I, Lewis BS. Importance of increasing age on the presentation and outcome of acute coronary syndromes in elderly patients. J Am Coll Cardiol 2004;43:346-52.
- 14. Velders MA, James SK, Libungan B, Sarno G, Fröbert O, Carlsson J, et al. Prognosis of elderly patients with ST-elevation myocardial infarction treated with primary percutaneous coronary intervention in 2001 to 2011: A report from the Swedish coronary angiography and angioplasty registry (SCAAR) registry. Am Heart J 2014;167:666-73.
- Singh SK, Bajpai M, Tiwari S, Sethi R, Verma DK, Chaudhary G. Effect of age on cardiac output after coronary angioplasty in patients of acute myocardial infarction. Natl J Physiol Pharm Pharmacol 2018;8:1235-9.
- Mehta L, Devlin W, McCullough PA, O'Neill WW, Skelding KA, Stone GW, et al. Impact of body mass index on outcomes after percutaneous coronary intervention in patients with acute myocardial infarction. Am J Cardiol 2007;99:906-10.
- 17. Romero-Corral A, Montori VM, Somers VK, Korinek J, Thomas RJ, Allison TG, *et al.* Association of bodyweight with total mortality and with cardiovascular events in coronary artery disease: A systematic review of cohort studies. Lancet 2006;368:666-78.
- Schmiegelow M, Torp-Pedersen C, Gislason GH, Andersson C, Lyngbæk S, Pedersen S, *et al.* Relation of body mass index to risk of stent thrombosis after percutaneous coronary intervention. Am J Cardiol 2012;110:1592-7.
- Singh SK, Bajpai M, Tiwari S, Sethi R, Verma DK, Chaudhary G. Effect of body mass index on cardiac output after coronary angioplasty in patients of acute myocardial infarction. Adv Res J Multidiscip Discov 2019;38:1-5.

How to cite this article: Singh SK, Bajpai M, Tiwari S, Sethi R, Verma DK, Chaudhary G *et al.* Impact of blood pressure and serum electrolytes level on ejection fraction in acute myocardial infarction patients. Natl J Physiol Pharm Pharmacol 2020;10(10):884-888.

Source of Support: Nil, Conflicts of Interest: None declared.